Please pass the salt - Just hold the processed food 3
What is salt and why do we need it .. 3
A history of salt’s links with heart disease 3
Current and recommended intakes ... 5
What could go wrong? ... 5
It’s not just about salt ... 5

Nutritional characteristics of native Australian fruits: Kakadu plum and Green plum as examples ... 8
Kakadu plum (Terminalia ferdinandiana) 8
 Nutritional characteristics .. 8
 Antimicrobial activity .. 9
 Commercial application .. 9
 Kakadu plum kernels .. 9
 Conclusion ... 9
Green plum (Buchanania obovata) ... 10
 Nutritional characteristics .. 10
 Antimicrobial activity .. 10
 Conclusion ... 10
Future research & avenues .. 11
While trekking through Europe in his twenties, my husband dutifully visited elderly Italian relatives and immediately sat down to a sumptuous garden-grown, home-cooked meal. His ‘nonno’ (Italian grandfather) asked him to pass the salt. Concerned, my husband told him too much salt wasn’t good for him. His nonno’s response: “I’m 90 years old and I’ve been adding salt to my food all my life. You can’t tell me it’s not good for me.”

Is it bad to eat too much salt? What is too much? Is it that simple?

What is salt and why do we need it

Salt has always been treasured. Someone we admire is the “salt of the earth,” while a person not so well respected is “not worth their salt.” Salt can symbolise friendship and hospitality; in many countries salt and bread are offered as a traditional housewarming gift. Its usefulness for preserving food has been long revered. Salt has even influenced language. For instance, it derives from the word “salary,” originally meaning the salt allowance that Romans paid their soldiers (salarium).

Ultimately, people love the taste of salt. It also enhances the flavour of food. Perhaps that is because it suppresses bitterness – if you try adding salt to tonic water, containing bitter quinine, you’ll find that it tastes sweeter.

The salt we eat is a mineral made up of the electrolytes sodium (Na+) and chloride (Cl−). Because of its positive charge, sodium is a cation while chloride, negatively charged, is an anion. These positive and negative charges must be balanced in electrolyte solutions and in our bodies. If sodium leaves a body cell, potassium (K+) enters to keep the positive and negative charges balanced inside and outside cells.

This is important because electrolytes attract water. About two thirds of body fluids are inside cells (intracellular) and a third outside (extracellular). If too much water could enter cells, they would burst. If too much water could leave cells they would collapse. As with all physiological systems (including blood sugar, hormones, temperature, etc.), our body is fine-tuned to maintain balance, or homeostasis.

Cells use osmosis to move water across their membranes; i.e. molecules move from where they are more highly concentrated to the side with a lower concentration. Salt contributes to 90 per cent of this osmotic transfer. More intricately, cell membranes are selectively permeable filters that allow some molecules through while blocking others. Proteins help regulate fluid movement in and out of cells. One of these proteins is a sodium-potassium pump, which actively swaps sodium for potassium through the cell membrane.

On a broader scale, the intestines and kidneys regulate levels of various minerals – including salt – in the body to keep levels constant. Sodium is ingested from food through the intestines. It is lost from the body through sweat and faeces; the kidneys then precisely excrete any excess sodium to keep its levels fine-tuned. Every day, the body recycles eight litres of fluids and associated minerals to maintain electrolyte balance.

Sodium is the main cation in bodily fluid outside cells. Its functions include maintaining blood volume, water and acid-alkaline balance. Working together with potassium, with its electrical charge it helps to transmit nerve impulses, keep the heart beating and contract muscles. Its pivotal roles make it “essential for human survival” (Alderman 2002). So how did salt become the bad guy?

A history of salt’s links with heart disease

Modernised societies are suffering increasingly high rates of chronic diseases, including heart disease (now the biggest cause of death), stroke and kidney failure. The latter diseases are related to high blood pressure, or hypertension, which increases as people age. Because
of sodium’s role in maintaining blood volume, it seemed like a viable target to reduce blood pressure.

Figure 2. Salt has been long revered for its flavour and ability to preserve food

The premise is, too much salt intake increases blood sodium levels. The body adjusts by retaining water – which follows sodium – to dilute sodium and maintain fluid balance. This water retention increases blood pressure. But as we’ve learned, the human kidney is designed to vary salt excretion to balance fluid levels. It is plausible though that the body’s fine-tuning struggles when salt intake is excessive – like, for instance, the pancreas goes on strike when trying to deal with glucose overload, leading to risk of diabetes.

Early studies showed that people in ‘underdeveloped’ cultures had lower blood pressure than developed cultures. One of the differences between these traditional hunter-gatherer cultures – with little access to salt – and modern societies was sodium intake. After migrants moved to industrialised cities their blood pressure tended to increase. Although they would have undergone many other environmental changes, increased sodium intake was thought to be responsible.

A recent study of island-dwelling Kuna Indians has thrown doubt on this conclusion. Over the past 50 years, they gained access to salt through trade with the mainland, without changing other aspects of their lifestyle. Their blood pressure has remained low, without any of the age-related increase seen in developed cultures. Similar disparities have been observed in other cultural comparisons. So as Alderman (2002) points out, “In short, salt is only one of the many factors that change with migration.”

Cross-sectional studies have correlated salt intake with blood pressure, but with inconsistent and inconclusive results. Large meta-analyses that pooled all studies together showed an overall drop in blood pressure when salt intake was lower – more so in older than younger people. But as Moyer (2011) wrote, “For every study that suggests that salt is unhealthy, another does not.” The chair of the salt committee for America’s 2010 guidelines even admitted that “It’s tough to nail these associations.”

The only way to really tell if salt causes high blood pressure is with an experimental study design. Animal studies showed that reducing sodium intake can lower blood pressure and that increasing sodium could increase it. Incidentally, an early study caused high blood pressure in rats with 500 grams of sodium per day (compare that to 7-10 grams consumed by the average Australian adult). In humans it is complicated. People’s blood pressure shows massive variation in response to salt. For instance, 269 medical students increased their sodium intake more than 12-fold: from 20 to 270 mmol (460 mg to 6,210 mg) over 24 hours. Half the students had no change in blood pressure. A quarter had increased blood pressure and a quarter had reduced blood pressure. It was proposed that some people are ‘salt sensitive’ while others are not.

Even so, blood pressure on its own does not necessarily equate to heart disease. Some studies found associations between higher sodium intake and heart problems. Other studies reported that lower sodium excretion in urine (a marker of intake, equating to less than 3 grams per day) was associated with greater risk of death from heart disease.

O’Donnell et al. (2012) highlighted several methodological differences between studies of sodium and heart disease that could explain varying outcomes. For instance, some used reported dietary sodium intakes to estimate consumption. These are not very accurate and tend to underestimate how much salt people eat (how do you accurately measure salt that is added to food or cooking?). Urinary excretion is a more precise estimate. When studies were restricted to those that measured sodium in urine, two showed a positive association between sodium intake and heart disease risk, two no association, and four showed that lower sodium levels were associated with higher risk of heart disease. Other factors that could explain conflicting findings include population characteristics, study designs, and outcome measures used.

What about longer term outcomes like quality and length of life? This has received very little consideration. In a study of rats, although restricted sodium intake reduced blood pressure, it also stunted their growth and shortened their lives. In humans there are little data. But there is no evidence that higher salt intake reduces life expectancy. In fact, on a population level, people in ‘under-developed’ cultures with low salt intake have short life spans compared to developed societies with higher salt intakes.

Despite inconsistent findings, individual variation and lack of long term sustainability, salt was still an irresistible
target for governments to target risk of heart disease at a population level. That’s why 75 countries now have extensive salt reduction campaigns. Supermarket shelves are lined with salt-reduced products and everyone is advised to eat less salt – whether or not they have high blood pressure. The global target is to reduce salt intake by 30% by the year 2025.

Current and recommended intakes

Currently, people in developed countries consistently consume between 2,300 mg to 4,600 mg sodium (or 1-2 teaspoons salt) per day. About 80 per cent of our salt intake comes from processed foods – not just salted chips but also hidden salt in bread, breakfast cereals, processed meats, soups, sauces, biscuits, pizza and spreads. Australians eat about 7-10 grams of salt per day (1½ to 2 teaspoons) – double or more the recommended amount. International and Australian guidelines recommend that adults consume 1,600 mg sodium per day (with an upper limit of 2,300 mg). That’s 4 grams of salt: less than one teaspoon.

What could go wrong?

Because sodium has numerous biological functions, lowering it affects more than blood volume. For instance, when sodium is reduced, the kidneys release an enzyme called renin to stimulate the release of hormones to restore blood volume. This system, when aroused, can adversely impact the lining of blood vessels and cause inflammation associated with atherosclerosis – another leading cause of heart disease and stroke. So, lowering sodium intake could cause the very conditions its reduction is meant to fix. Sodium restriction also stimulates the sympathetic nervous system – responsible for our adrenalin-driven fight/flight response – and increases insulin resistance, which is linked to high blood glucose and increased risk of diabetes – another risk factor for heart disease.

These complexities likely explain why some studies have linked low sodium intake to higher risk of stroke and heart attacks. Reflecting this, meta-analyses of studies investigating salt intake and heart disease show a J-shaped or U-shaped curve. That means that when pooling all study findings, both low and high salt intakes are associated with poor health outcomes. In a combined analysis of 133,118 people from 49 countries, low salt intake was associated with increased risk of heart disease and death regardless of blood pressure. Increased risk of heart disease and death was only associated with higher salt intake in a small percentage of the sample who had hypertension and were consuming more than 7 g sodium (around 3 teaspoons of salt) per day. Based on these results, Mente et al. (2016) suggested that “lowering sodium intake is best targeted at populations with hypertension who consume high sodium diets.”

Prompted by in-depth reviews that revealed shortcomings of salt and heart disease research, Katz (2015) published a series of clinical observations. Each described elderly people who were faint and about to collapse and were revived with fluid and salt. Katz summarised the cases saying, “The low salt diets followed and the antihypertensive medications taken by each support the need for caution in the treatment of hypertension and the recommendation of salt restriction among elders.” Alderman (2005) responded that the effects of low salt diet combined with antihypertensive medication could be more serious than just fainting – even fatal.

It’s not just about salt

In case you missed it earlier, 80 per cent of people’s salt intake comes from processed foods – much of it hidden. That’s a clue. Processed food is packed with other unwholesome ingredients like sugar, unhealthy fats, and an array of artificial flavours, preservatives and colours – most of which have not even been tested for their safety. Compounding that, when people eat processed food, they are likely to be eating less fresh food. That means they are not reaping the benefits of all the vitamins, minerals, polyphenols and fibre that are packaged in plant foods like fruit, vegetables, legumes, nuts, seeds, and wholegrains. These nutrients protect against heart disease and poor health.

Potassium is an important ingredient rich in plant foods. A diet high in plant food and low in processed food will naturally have lower sodium and higher potassium than the average western diet. Why is this important? Recall that cells maintain a balance of sodium and potassium...
for intra/extra-cellular water balance. Potassium helps to regulate blood pressure by telling the kidneys to excrete sodium and maintain balanced fluid levels. Accordingly, evidence suggests that dietary potassium is associated with decreased risk of stroke and heart disease.

Figure 4. If you eat lots of plant foods it’s probably okay to add salt

Beyond diet, other lifestyle factors also contribute to poor health and heart disease, including inactivity, diabetes, social isolation, smoking, stressful occupations and being overweight.

Overall, while reducing salt might help some people who have risk factors like overweight and hypertension (and high salt intake), it may harm others or have no effect at all other than depriving meals of flavour. The body of evidence to date suggests that reducing salt is not a one-size fits all approach. Following his in-depth review of research on sodium and heart disease, Alderman (2002) concluded, “Any decision to adopt a low sodium diet should be made with awareness that there is no evidence that this reduction is either safe, in terms of ultimate health impact, or that it will produce [protection from heart disease].” He argues that “there is no justification for a population-wide, public health recommendation for radical reduction (30–50%) in sodium intake.”

Therefore, it’s probably okay to add salt. Particularly, if like my husband’s 90-year-old nonno, you eat a healthy diet high in plant foods and low in processed food.

Student activities:

1. Explain what salt is and what roles it has in the body.
2. What is hypertension? Outline other risk factors for heart disease and stroke.
3. Why is salt associated with risk of heart disease?
4. Who might benefit from reducing their salt intake? Does this warrant a population-wide approach to reducing salt? Why or why not?
5. From what foods do we, in developed countries like Australia, get most of our salt from?
6. What can we eat to reduce risk of poor health and chronic disease?
7. What other things can we do to maintain good health?
8. What factors do you think contribute to controversy in nutrition research and government policies? How do you think you can get to the truth behind conflicting research?
9. What’s your take home message from this information? How would you apply this in your own life?
10. Outline what you think a better approach to population health in westernised societies might be.
References

Moyer, M. W. (2018). It’s time to end the war on salt – the zealous drive by politicians to limit our salt intake has little basis in science. Scientific American. URL: https://www.scientificamerican.com/article/its-time-to-end-the-war-on-salt/

Nutrition Australia. Salt and hypertension. URL: http://www.nutritionaustralia.org/national/frequently-asked-questions/salt-and-hypertension

The Aboriginal people in Australia have subsisted on indigenous plants for 65,000 years. There are hundreds of edible indigenous plant species in Australia used by Aboriginal people for their nutritional and medicinal value, yet their full potential as foods remains hidden.

Many native Australian fruits such as Kakadu plum (*Terminalia ferdinandiana*), Green plum (*Buchanania obovata*), Burdekin plum (*Pleiogynium timorense*) and Davidson plum (*Davidsonia pruriens*) are called plums, but they are not plums in terms of botanical systematics. Kakadu plum and Green plum were selected as a focus for this article because of their promising nutritional profiles, functionality and significance.

Kakadu plum (*Terminalia ferdinandiana*)

Kakadu plum (Figure 1) is a food plant of high nutritional value and has a huge potential for use as a functional food or ingredient. Kakadu plum is an important traditional food in the diet of Aboriginal people in Northern Australia. It grows mainly in the coastal (<40 km inland) tropical savannas of northern Australia from Broome in the west to the Gulf of Carpentaria in the east and is most abundant on Indigenous owned land. Kakadu plum is part of the Combretaceae family and is a small to moderately sized semi-deciduous tree. It has light green oval shaped leaves. The fruit, about the size of an olive, are highly variable in shape, and their colour when ripe is yellow-light green.

The species is known by a variety of common names including Kakadu plum, bush plum, billygoat plum, sally plum, Gabiny (Yawuru people from the Broome area), Gubinge (Bardi people north of Broome), Mi-marral (Wadeye Area) and Murunga (east Arnhem Land). When on hunting trips, the Aboriginal people consume the fresh ripe fruit for quick energy and refreshment. In Western Australia, the plums are pounded and then soaked in water to make an acidic drink. Fruits are described to have an aroma of stewed apples and pears, with some cooked citrus, pickled and fermented notes. Taste is described as tart and bitter with strong stewed fruit flavour intensity.

![Kakadu plum fruit](image1)

Figure 1. Kakadu plum fruit

Nutritional characteristics

The macronutrient composition of Kakadu plum in percentages (g/100g) is water 76, protein 0.8, fat 0.5, and total carbohydrate 17. It provides 247 kJ of energy. Kakadu plum is well known for its exceptionally high vitamin C content which can vary from 50-32,000 mg/100g dry weight, depending on environmental conditions.
conditions such as location, soil quality, rainfall, temperature and sun exposure. Vitamin C is a water-soluble vitamin and required for normal growth and health (e.g. formation of collagen and wound healing). Vitamin C is also known for facilitating iron absorption. A severe deficiency in vitamin C results in a serious condition called scurvy.

Kakadu plum is also a rich source of ellagic acid with concentrations reported up to 600 mg/100g in fresh fruit. Ellagic acid, a polyphenolic compound, is known for its antioxidant capacity and potential health benefits. Polyphenols are secondary plant metabolites with potential health benefits for humans. These compounds can also act as antioxidants and can be used in food systems to prevent oxidation and extend the shelf-life of food products. Please see Parletta (2017) for further details about polyphenols, their health benefits and antioxidant properties.

Antimicrobial activity

In vitro laboratory experiments have investigated the antimicrobial activity of three extracts of Kakadu plum products including puree (PUR), freeze-dried puree powder (POW) and an aqueous enzyme assisted extract (EAE) rich in ellagic acid. Antimicrobial efficacies were evaluated against 13 microorganisms including gram-positive and gram-negative bacteria and fungi. Kakadu plum products showed antimicrobial activity against the gram-positive bacteria. The highest antimicrobial efficacy against the gram-positives was demonstrated by the EAE, followed by POW and PUR. Scanning electron microscopy showed that Kakadu plum products impart their antimicrobial properties by disrupting the cell membrane of gram-positive bacteria. Gram-positive bacteria include *Staphylococcus aureus* which can cause severe food poisoning.

Commercial application

The commercial potential of the Kakadu plum, especially the use of its strong antimicrobial and antioxidant activity, has expanded in recent years as new markets for Kakadu plum have opened up. For example, a Kakadu plum formulation has been used commercially in the prawn industry to extend the shelf-life of cooked chilled prawns and retain the colour of frozen prawns. This addressed consumer demand to minimise the use of artificial chemical preservatives (Figure 2). In 2015, $12.5 million worth of prawns, up from $10 million in 2013, were treated with this Kakadu plum extract. Prawn farming is Queensland’s largest aquaculture sector at a value of ~$80 million. The Kakadu plum extract provides a promising opportunity for further applications in the food and beverage industry. In 2016, a catering company in the Northern Territory started producing frozen meals commercially using Kakadu plum as a natural preservative, suggesting that this potential is set to expand.

![Figure 2. Preservation of prawns using Kakadu plum formulation to extend life.](image)

Kakadu plum kernels

Not only the Kakadu plum fruit but also the kernels have an interesting nutritional profile. Industrial processing of *Terminalia ferdinandiana* fruit into puree generates seeds as a by-product, which are generally discarded. Kakadu plum seeds consist of the kernels protected by the seedcoats (Figure 3). Researchers found that the kernels are composed of 35% fat, while protein accounts for 32% dry weight (DW). The energy content and fibre were 2065 KJ/100 g and 21.2% DW, respectively. Furthermore, the kernels had a considerable amount of minerals and trace elements, such as potassium (6693 mg/kg), calcium (5385 mg/kg), iron (61 mg/kg) and zinc (60 mg/kg) DW and had low levels of heavy metals. The fatty acid composition of the kernels consisted of omega-6 fatty acid, linoleic acid (50.2%), monounsaturated oleic acid (29.3%) and two saturated fatty acids, namely palmitic acid (12.0%) and stearic acid (7.2%) (Akter et al., 2018).

The promising nutritional profile of Kakadu plum kernels has the potential for a broad range of applications in the food and feed industry.

![Figure 3. Kakadu plum seeds and kernels](image)

Conclusion

The rich nutritional and bioactive properties of Kakadu plum demonstrates the potential of promoting this traditional Australian fruit as a (functional) food and ingredient. Furthermore, the broad spectrum of...
antimicrobial activity clearly indicates its potential in different food systems to enhance quality and improve safety.

Green plum (Buchanania obovata)

Green plum, the fruit of the tree *Buchanania obovata* Engl., is a native food eaten by Indigenous Australians. It grows and is wild harvested in the northern parts of Australia, the Northern Territory and Western Australia, and is also known as the wild plum, bush mango or wild mango. The Green plum is a small green fruit, shown in Figure 4. The flesh is eaten either raw from the tree or mashed into a paste with the seed.

The tree *B. obovata* grows to about 15 m high and has rough brown bark and branchlets. The leaves are alternate and their shape is obovate (oval-shaped, narrowing to a point at the base) to oblong-obovate, growing to 5–25 x 1.5–10 cm in size. The flowers are bisexual and are creamy white in colour.

Buchanania obovata is in the family Anacardiaceae which contains well-known commercialised fruit including mango (*Mangifera indica*), cashew apple (*Anacardium occidentale*) and pistachio nuts (*Pistacia vera*). The Green Plum is used by Australian Aboriginal people as a food and the plant as bush medicine. Young stems, leaf ribs, and inner bark from young branches and older stems is used as medicine for their antiseptic and analgesic qualities to treat toothache, skin infections and conditions and as an eye lotion. (Fyfe et al., 2018a & 2018b).

Commonly eaten by many Aboriginal communities, Green plum is a favourite with children. Aboriginal communities have names for it in their own languages, shown below.

<table>
<thead>
<tr>
<th>Aboriginal names for the Green plum</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taluuny</td>
<td>Kija</td>
</tr>
<tr>
<td>Kilen</td>
<td>Murinpatha</td>
</tr>
<tr>
<td>Djamuru</td>
<td>Jandjung</td>
</tr>
<tr>
<td>Dhurrpinda</td>
<td>Rirratjunu</td>
</tr>
<tr>
<td>Munyndjul</td>
<td>Djambarpuynu</td>
</tr>
<tr>
<td>Mulaagi</td>
<td>Burarra</td>
</tr>
<tr>
<td>Bigigee</td>
<td>Yanyuwa</td>
</tr>
<tr>
<td>Bikabaji</td>
<td>Garawa</td>
</tr>
<tr>
<td>Mangkarra</td>
<td>Anindilyakwa</td>
</tr>
<tr>
<td>Yulwandi</td>
<td>Djinang</td>
</tr>
<tr>
<td>Yulmurra</td>
<td>Alawa</td>
</tr>
<tr>
<td>Mangkarrka [Groote Eylandt]</td>
<td></td>
</tr>
</tbody>
</table>

Nutritional characteristics

The Green plum flesh is high in protein (12.8 g/100 g DW) and both flesh and seed are high in dietary fibre (55.1 and 87.7 g/100 g DW, respectively). The flesh is high in potassium (2274.7 mg/100 g DW) and is a good source of magnesium (570.5 mg/100 g DW), calcium (426.0 mg/100 g DW) and phosphorous (216.8 mg/100 g DW), whereas the seed is high in iron (8.15 mg/100 g DW). The flesh contains folate at 752.4 μg/100 g DW which is much higher than the content reported for other Australian native fruits. A B vitamin, folate is essential for human health due to its role in synthesising, repairing and methylating DNA. Folate deficiency is associated with neural tube defects, non-alcoholic fatty liver disease and steatohepatitis, and is a risk factor for vascular disease. The cells in the human body are unable to synthesise folate so there must be sufficient dietary intake (Fyfe et al., 2018a & 2018b).

Antimicrobial activity

The flesh of the Green plum has antimicrobial properties effective against gram-negative (Escherichia coli 9001—NCTC) and gram-positive (*Staphylococcus aureus* 6571—NCTC) bacteria. Scanning electron microscopy analysis shows that the antimicrobial activity causes cell wall disintegration and cytoplasmic leakage in both bacteria. The Green plum flesh and seed also contain a range of antioxidant polyphenols including gallic acid, ellagic acid, p-coumaric acid, kaempferol, quercetin and trans-ferulic acid that may be responsible for this activity (Fyfe et al., 2018a & 2018b).

Conclusion

The Australian native Green plum has promising nutritional composition in both its flesh and seed. It is high in fibre, folate and potassium and contains essential minerals and trace elements as well as antioxidant polyphenols. Flesh extracts have the potential to be used as natural food preservatives due to their observed antimicrobial activity.
Future research & avenues

The use of native Australian fruits such as Kakadu plum and Green plum as novel sources of nutrients and bioactive compounds could offer enormous opportunities for the food/functional food industry (e.g. healthy snacks, food supplements, functional ingredients, natural preservatives). However, detailed *bioavailability and bioactivity studies with humans are warranted to assess the “real” dietary value of these native fruits.

*Bioavailability has been defined as the rate and extent to which the active substances or therapeutic moieties contained in a drug are absorbed and become available at the site of action. This definition also applies to active substances (nutrients, polyphenols) present in foods (Parada and Aguilera, 2007). Basically, it means the amount of nutrients that are absorbed when a food is eaten. Bioactivity when referring to human studies in the present article means potential health benefits.

Student activities:

1. Are Kakadu plum and Green plum “real” plums (botanical systematics)?
2. Outline the nutritional composition of the Kakadu plum.
3. Outline the nutritional composition of the Green plum.
4. What is ellagic acid? What are its potential health benefits?
5. Look up “anti-microbial” and summarise what it means. How is this useful for food?
6. Kakadu plum has antimicrobial activity against which gram positive bacteria?
7. What are the benefits of using extracts from these plums for preserving food?
8. Visit this website: http://tasteaustralia.biz/bushfood/. Each student choose three different native Australian foods to research – where and how they grow, what they look like, their nutritional properties, what they are used for and recipes for cooking them. Share with the class in a presentation.
10. Research some other Aboriginal bush foods. Visit this site as a starting point: http://www.indigenousaustralia.info/food.html.
References

